Comparitive Study of Edge Detection using Multi Structural Elements with different parameters

Harpreet Kaur, Mr.Gaurav Mittal

Abstract

The important step of image processing is edge detection .Conventionally, the method of edge detection only provides the information regarding edges from certain aspects. In this paper, detection of edges is done using multi structural elements with the help of morphological operations and then analyses the results with the help of different parameters. By simulation and comparing the images with the traditional methods i.e. sobel edge detector, canny edge detector,perwitt edge detector, laplician of Gaussian edge detector, the proposed method gives the better result of edge detection.

Index Terms - Mathematical Morophology, structuring element, sobel edge detector, canny edge detector,perwitt edge detector, laplician of Gaussian edge detector ,Peak Signal to Noise Ratio,(PSNR),Root Mean Square Error(RMSE) and Correlation Coefficient(CoC).

1 Introduction

IN Image analysis, the most common method is used for object detection is edge detection techniques.The discontinuities in gray level image is defined by an edge. It can be also say that the difference between background and an object is known as edge. Some classical traditional methods like Sobel, Perwitt ,Canny and Roberts are used for edge detection in image processing.These are based on the image gradient which are calculated by the use of first order derivation.In many cases, these methods are not gives the suitable results of edge detection of image in image processing. Moreover, the hidden objects are also not well detected by using these traditional methods.In this paper, the different multi structural elements are used i.e. $3 * 3,5 * 5$ and $7 * 7$ with morophological operators so that the edge of image is properly detected and gives the better results of edge detection in image processing.These results can also be compared with different parameters like RMSE ,PSNR and CoC.

2 TRADITTIONAL METHOD OF EDGE DETECTION

2.1Sobel Edge Detector

In digital images, the approximate partial derivation in gradient is computed by the Sobel operator.In terms of computations, the edge is based on the edge convolving with the integer,separable and small valued filter in vertical and horizontal directions .Mathematically, the approximations of the derivative can be

[^0]
2.2 Canny Edge Detection

John F.Canny was developed Canny Edge operator in 1986. In this technique, multistage algorithms are used for the edge detection in image. This technique or detector helps in the detection of wide range of edges in image for the better results of edge detecton .The noise can be reduced and suppression can be minimum are the stages of canny algorithms which are used in images.

2.3Perwitt Edge Detection

The maximum response which are directly from the kernel are obtained by the use of Perwitt Edge Detector.The perwitt edge operator or detector are used for the measurement of two components i.e. horizontal edge components and vertical edge components. These two components (vertical and horizontal) are used different kernals.

2.4Robert Edge Detection Method

This technique are used to perform 2D spatial gradient measurement of an image.This operator or detector is simple to use and easy to compute.In this technique, mostly used the gray scale image for input and output operations. The points at input image which are having absolute magnitude of the spatial gradient represents the absolute magnitude of pixel value at that point in output image.

2.5Laplacian of Gaussian edge Detector

The Marr and Hilder thin was invented Laplacian of Gaussian Edge dldetector in 1980 . This method is used for detection the correct edge places of an image. This method or detector is also used for the testing of wider area around the pixel in an image.Thiss techniques or method are not able to give the suitable result for the edge orientationbecause in this techniques the laplacian filters are used.
calculated by using two $3 * 3$ kernals which are convolved with the original image.

3 MATHEMATICAL MORPHOLOGY

The theory which is developed from Set Theory is known as mathematical Morophology.This theory was introduced by Matheron[5]. These techniques are used for geologic samples and geometric structures of metallic samples. The image analysis are extended by Serra.Mathematical morophology is a very important theory ,the operations which are used in MMare defined by the basic idea of certain form of structural i.e. arithmetic operator.This arithmetic operator are used to certain measure and extract the corresponding shape of image.It is also used to recognition purposesand achieve the right image analysis.

Main Morphological Operators are as follows:
The basic mathematical morphology has four basic morphological operators: dilation, erosion, opening and closing operator.

Dilation and Erosion

The dark details can be eliminate and the bright regions can be used to enhanced by the use of dilation operator.and for the weakens the less bright region of edges to eliminate the detail of by the brightness of the use of operator i.e. erosion,

Opening and Closing

Both operations i.e. opening and closing are mutually dual operations .Opening operators are used to break the narrow gap and smoothes the counter of an image. While closing operator eliminates small holes fills gaps in contours and fuse narrow breaks

4 DIFFERENT PARAMETERS

Root Mean Square Error

An estimator is to quantify the difference between an estimator and the true value of the quantity being estimated is called Mean square error
The mean square error is the squared error averaged over the $\mathrm{M} \times$ N array.

$$
\begin{gather*}
\mathrm{M} \mathrm{~N} \\
\mathrm{MSE}=1 / \mathrm{MN} \Sigma \Sigma(\mathrm{fl}(\mathrm{i}, \mathrm{j})-\mathrm{f} 2(\mathrm{i}, \mathrm{j})) 2 \tag{1}\\
\mathrm{i}=1 \mathrm{j}=1
\end{gather*}
$$

where $f 1$ is output image and $f 2$ is input image. Its value must be less.

$$
\begin{equation*}
\mathrm{RMSE}=\sqrt{ } \mathrm{MSE} \tag{2}
\end{equation*}
$$

Peak Signal to Noise Ratio

The rario between the maximum possible power to the power of corrupting noise is know as Peak Signal to Noise Ratio. It affects the fidelity of its representation. It can be also said that it is the logarithmic function of peak value of image and mean square error.
PSNR=10 LOG(2552/MSE)
where MSE is the mean square error . Its value must be high

The correlation coefficient a concept from statistics is a measure of how whl trends in the predicted values follow trends in past actual values. It is a measure of how well the predicted values from a forecast model "fit" with the real-life data. The correlation coefficient is a number between 0 and 1 . If there is no relationship between the predicted values and the actual values the correlation coefficient is 0 or very (the predicted values are no better than random numbers). As the strength of the relationship between the predicted values and actual values increases so does the correlation coefficient. A perfect fit gives a coefficient of 1.0. Thus the higher the correlation coefficient the better.

Correlation $(\mathrm{r})=\mathrm{N} \Sigma \mathrm{XY}-(\Sigma \mathrm{X})(\Sigma \mathrm{Y}) / \operatorname{Sqrt}\left(\left[\mathrm{N} \Sigma \mathrm{X}_{2}-(\Sigma \mathrm{X})_{2}\right]\left[\mathrm{N} \Sigma \mathrm{Y}_{2}-\right.\right.$ $\left.\left.(\Sigma \mathrm{Y})_{2}\right]\right)$
where
$\mathrm{N}=$ Number of pixels of image
$\mathrm{X}=$ input image
$\mathrm{Y}=$ output image
$\Sigma X Y=$ Sum of the product of input and output image
$\Sigma X=$ Sum of pixels of input image
$\Sigma Y=$ Sum of pixels of ouput image
$\Sigma X_{2}=$ Sum of square of pixel of input image
$\Sigma \mathrm{Y}_{2}=$ Sum of square of pixels of output image

5 IMPLEMENTATION OF METHOD

1) Intially, take an image .
2) Use the different structuring elements one by one for image which are mentioned below:

1st method:

$\mathrm{Se} 1=111$	$\mathrm{Se} 2=101$
000	101
111	101
(180 degree)	(90 degree)
$\mathrm{Se} 3=011$	Se4= 110
101	101
110	011
(135 degree)	(45 degree)

2nd method:
Sel=11111
11111
$\mathrm{Se} 2=11011$

00000
11011
11011
$11111 \quad 11011$
11111
11011
(180 degree)
Se3= 01111
(90 degree)
Se4=1 1110
11101
10111
11011
11011
10111
01111
(45 degree)
3rd method
$\mathrm{Se} 1=00000$
00000
Se2=0 0100
00100
11111
00100
00000
00100

00000
(180 degree)
Se3= 10000 01000 00100 00010 00001
(135 degree)

4th method:

Se1=0 0000 00000 11111 00000 00000
(180 degree)
Se3= 10000 01000 00100 00010 00001
(135 degree)
Se5= 01000 00000 00100 00000 00001
(112.5 degree)

Se7= 00010 00000 00100 00000 01000
(67.5 degree)

5th method:
Sel=11111
11111
00000
11111
11111
(180 degree)
Se3 = 01111
10111
11011
11101
11110
(135 degree)
Se5= 10111
11111
11011
11111
11101
(112.5 degree)

Se7=11101
11111
11011
11111
10111
(67.5 degree)

00100
(90 degree)
Se4=000001
00010
00100
010000
10000
(45 degree)

Se2=0 0100
00100
00100
00100
00100

(90 degree)
Se4=0 0001 00010 00100 01000 10000
(45 degree)
Se6== 00000 00001 00100 10000 00000
(22.5 degree)

Se8=0 0000
10000 00100 00001 00000
($\mathbf{1 5 7 . 5}$ degree)

1011
(90 degree)
Se4=11110
11101
11011
10111
01111
(45 degree)
Se6= 11111
11110
11011
01111
11111
(22.5 degree)
Se8=111111
01111
11011
11110
11111
(157.5 degree)

6th method
Sel=1111111 1111111 1111111 0000000

1111111 1111111
1111111
(180 degree)
Se3=0 111111
1011111
1101111
1110111
1111011
1111101
1111110
(135 degree)
7th method
Se1=0000000
0000000
0000000
1111111 0000000 0000000 0000000
(180 degree)
se3=0000001
0000010
0000100
0001000
0010000
0100000 1000000 (45 degree)

8th method
Sel=0 000000
0000000
0000000
1111111 0000000 0000000 0000000
(180 degree)
Se3=1000000
0100000
0010000
0001000
0000100
0000010
0000001
(135 degree)
Se5=0 000000
0010000
0000000
0001000
0000000
0000100
0000000
(112.5 degree)

Se2=1110111
1110111
1110111
1110111
1110111
1110111
1110111
(90 degree)
Se4=1111110
111110
1111011
1110111
1101111
1011111
0111111
(45 degree)
se2=0001000
0001000
0001000
0001000
0001000
0001000
0001000
(90 degree)
se4=1000000
0100000
0010000
0001000
0000100
0000010
0000001
(135 degree)
se2= 0001000
0001000
0001000
0001000
0001000
0001000
0001000
(90 degree)
se4= 0000001
0000010
0000100
0001000
0010000
0100000
1000000
(45 degree)
se6= 0000000
0000000
0000010
0001000
0100000
0000000
0000000
(22.5 degree)

Se7=0000000	$\mathrm{se} 8=0000000$
0000100	0000000
0000000	0100000
0001000	0001000
000000	0000010
0010000	0000000
0000000	0000000
(67.5 degree)	$(\mathbf{1 5 7 . 5}$ degree)

3) All the structuring element, is implemented one by one
4) After that, use morphological operators i.e. dilation and erosion for better results
5) Then take the difference between dilated and eroded image (in all directions) for the detection of edge
6) Then further take the average of all the resultant images i.e. in case of 1 st method $\mathrm{Se} 1+\mathrm{Se} 2+\mathrm{Se} 3+\mathrm{Se} 4 / 4$
7)Again for better results, find the edges for all the methods of an image.
7) if there is any line spacing between the image edges., then again use the morphological operator i.e. dilation
8) According the need, Increase the intensity of the image
9) Then results is to be displayed
10) At last, compare the result with the traditional techniques of edge detection.
11) Again compare these results according to different parameters

5. RESULTS

First Image- Building

Seccond-Medical Image

8th method $\left(7^{*} 7\right)$ eight directions

Table 5.1 Comparison of different edge detection method of building image

S.NO.	Method of implementa- tion	MSE	RMSE	PSN	PSNR	CoC
1	1st method	$1.8203 \mathrm{e}+004$	134.9200	$6.8861 \mathrm{e}+003$	38.3797	0.0174
2	2nd method	$2.0620 \mathrm{e}+004$	134.9200	$6.8861 \mathrm{e}+003$	38.3797	-0.1282
3	3rd method	$2.0494 \mathrm{e}+004$	143.1571	$6.4899 \mathrm{e}+003$	38.1224	-0.0468
4	4th method	$1.9354 \mathrm{e}+004$	139.1192	$6.6783 \mathrm{e}+003$	38.2466	-0.0938
5	5th method	$1.9956 \mathrm{e}+004$	141.2659	$6.5768 \mathrm{e}+003$	38.1801	-0.2301
6	6th method	$2.0683 \mathrm{e}+004$	143.8160	$6.4602 \mathrm{e}+003$	38.1024	-0.1513
7	7th method	$1.9617 \mathrm{e}+004$	140.0607	$6.6334 \mathrm{e}+003$	38.2173	-0.2574
8	8th method	$1.7860 \mathrm{e}+004$	133.6398	$6.9521 \mathrm{e}+003$	38.4212	-0.0902
9	9th me- thod(sobel)	$2.4236 \mathrm{e}+004$	155.6782	$5.9679 \mathrm{e}+003$	37.7582	0.0608
10	10th me- thod(canny)	$7.1264 \mathrm{e}+003$	84.4179	$1.6135 \mathrm{e}+003$	32.0776	0.0661
11	11 th me- thod(prewitt)	$7.1282 \mathrm{e}+003$	84.4285	$1.6133 \mathrm{e}+003$	32.0771	0.1885
12	12th me- thod(log)	$7.1252 \mathrm{e}+003$	84.4109	$1.6136 \mathrm{e}+003$	32.0780	0.1411

Table 5.2 Comparison of different edge detection method of medical image

S.NO.	Method of im- plementation	MSE	RMSE	PSN	PSNR	CoC
1	1st method	1.6744 e +004	129.3997	$1.3853 \mathrm{e}+003$	31.4154	0.1508
2	2nd method	1.7847 e +004	129.3997	$1.3853 \mathrm{e}+003$	31.4154	0.0887
3	3rd method	1.8290 e +004	135.2409	$1.3255 \mathrm{e}+003$	31.2237	0.1319
4	5th method	1.6785 e +004	129.5582	$1.3836 \mathrm{e}+003$	31.4101	0.1579
5	6th method	1.7893 e +004	1.9029 e +004	133.7660	$1.3401 \mathrm{e}+003$	31.2713
6	7th method	2.1621e +004	147.0419	$1.2191 \mathrm{e}+003$	30.8603	-0.1744
7	1.6316 e +004	127.7347	$1.4033 \mathrm{e}+003$	31.4716	0.1728	
8	8th method		IUSER ©2012 http://www.iser.org	0.0409		

9	9 th me- thod(sobel)	2.8601 e +004	169.1192	$1.0599 \mathrm{e}+003$	30.2528	-0.0057
10	10 th me- thod(canny)	2.8586 e +004	169.0727	$1.0602 \mathrm{e}+003$	30.2540	0.0365
11	11 th me- thod(prewitt)	2.8602 e +004	169.1211	$1.0599 \mathrm{e}+003$	30.2528	-0.0093
12	12 th method(log)	2.8575 e +004	169.0400	$1.0604 \mathrm{e}+003$	30.2548	0.1062

Conclusion

It is concluded that detection of edge using mathematical morphology is more efficient than traditional methods. The structuring elements are used in this paper are $3 * 3,5 * 5$ and $7 * 7$ with mathematical morphology operator for the better results in edge detection of an image. The main benefits of using mathematical morphology are interpretation, direct geometric, efficiency in hardware implementation and its simplicity. When the result is obtained, then compare the different parameters of image for better results of edge detection among all the methods According to the comparison table ,the minimum RMSE ,maximum PSNR value is to be obtained by using 8th methods among all the methods. But CoC value is not so good which can be improved in future research

References

[1] Ms. Beant Kaur and Mr.Anil Garg, " Comparative Study of Different Edge Detection Techniques," ISSN: 0975-5462, Vol. 3 No. 3 March 2011.
[2] Ms. Beant Kaur and Mr.Anil Garg,," Mathematical Morophology Edge Detection For Remote Sensing Images , " 978-4244-86793/11/\$26.00©2011 IEEE
[3] M Rama Bai,"A new approach for border extraction using morphological methods",International Journal of Engineering Science and Technology Vol.2(8),2010,3832-3837
[4] S.Lakshmi ,Dr.V.Sankarnanarayan, " A Study of Edge Detection Techniques for Segmentation Computing Approache, "IJCA special issue on " Computer Aided Soft Computing Techniques for imaging and Biomedical Applications"CASCT,20
[5] J. Serra. Image Analysis and Mathematical Morphology, Academic Press, New York, 1982.
[6] M Rama Bai,"A new approach for border extraction using morphological methods", International Journal of Engineering Science and Technology Vol.2(8),2010,3832-3837
[7] Erick Lopez Ornelas,"High Resolution Images:Segmenting Extracting Information and GIS Integration",World Academy of science Engineering and Technology 54 ,2009
[8] V.Shrimalli, R.S.Anand ,R.K.Srivastav,"Medical feature based evaluation of structuring elements for morphology enhancement of ultrasonic images", Journal of Medical Engineering \& Technology , Vol. 33,No. 2,February 2009,158-169
[9] C. E.Shannon. "A Mathematical Theory of Communication". The Bell System Technical Journal, 1948, 27, pp 379~423.
[10] Rahul Gaurav,"A Mathematical Morphological Perspective in World of images ",Seminar on spatial Information Retrieval Analysis,Reasoning and Modelling 18th - 20th March 2009,ISI- DRTC ,Bangalore ,India
[11] Rui Guo,Daoliang Li," Road Detection Method for Land Consolidation Using Mathematical Morphology from High Resolution Image", Proceedings of the 13th WSEAS International Conference on Applied Mathematics(MATH'08)
[12] Yee Yee Htun,Dr. Khaing Khaing Ayez," Fuzzy Mathematical Morphology Approach in Image Processing", World Academy of Sciences ,Engineering and Technology 42,2008
[13] Tarek A. Mahmoud,Stephen Marshall," Medical Image Enhancement using Threshold Decomposition Driven Adaptive Morphological Filter", 16th European Signal Processing Conference (EUSIPCO2008),Lausanne,Switzerland ,August 25-29,2008
[14] M.Kowalczyk,P.Koza,P.Kupidura,J.Marciniak,"Application of Mathematical Morphology Operations for Simplication and Improvement of Correlation of Images in Close - Range Photogrammetry", The International Archieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol.XXXVII Part B5.Beijing
[15] .T.A. Mohmoud ; S.Marshal," Edge -Detected Guided Morphological Filter For Image sharpening ",Hindawi Publishing orporation EURASIP Journal on image and video Processing volume 2008
[16] Jie Yanga ,Ran Yanga ,Shigao Lib,S.Shoujing Yina,Qianqing Qina," A Novel Edge Detection Based Segmentation Algorithm for Polarimetric Sar Images", The International Archives of the Photogrammetry, Remote sensing and Spatial Information ,Sciences .Vol.XXXVII,Part B7.Beijing 2008
[17] Yu Lei and Nie jiafa,"Subpixel Edge Detection Based on Morphological Theory",Proceedings of the world Congress on Engineering and Computer Science 2008 WCECS 2008 ,October 22-24, 2008 ,San Francisco,USA
[18] 18. Mrityunjay Kumar Ray" Simplified Novel Method for Edge Detection in Digital Images" 978-1-61284-653-8/11/\$26.00 ©2011
[19] Atif Bin Mansoor ,Ajmal s Milan,Adil Khan,"Fuzzy Morphology for Edge detection and Segmentation", G.Bebis et al.(Eds.): ISVC 2007 , Part II,LNCS 4842,pp.811-821,2007
[20] Zaharescul,"Morphological Enhancement of Medical Images in a logarithmic Image Environment",15th European Signal Processing Conference (EUSIPCO 2007),published in IEEE
[21] Bouchet A,Pastore J,Ballarin V," Segmentation of medical Images using Fuzzy Mathematical morphology"2007, JCST
[22] Alper Pahsa,"Morphological Image Processing With Fuzzy Logic", Havacilik Vc Uzay Teknolojileri Der Gisi Ocak 2006,CICK 2SAY13(27-34)
[23] Mohamed Roushdy,"Comparative Study of Edge detection Algorithms Applying on Grayscale Noisy image using Morphological Filter", GVIP Journal , Volume 6,Issue 4,December ,2006
[24] ShiHuZHU," Edge Detection Based on Multi-structure Elements MorphologyandImageFusion" 978-1-4244-9600-6/11/\$26.00 ©2011 IEEE
[25] Yuqian Zhao,Weihua Gui and Zhencheng Chen ,"Edge Detection Based on Multi-Structural Elements Morphology"1-4244-03324/06/\$20.00@2006IEEE
[26] Zhao Yu quian ,Gui Wei Hua , Chen Zhen Cheng,Tang Jing tian,Li Ling Yun," Medical Images Edge detection Based on mathematical Morphology", Proceedings of the 2005 IEEE
[27] Elbehiery, A.Hefnawy and M.Elewa," Surface Defects Detection for ceramic Tiles Using image processing and Morphology-5, 2005.

[^0]: - Harpreet kaur is currently pursuing masters degree program in electronics and communication engineering in Bhai Gurdas Institute of Engineering and Technology, Sangrur (Punjab technical University,Jalandhar) e-mail-er.harpreetk@yahoo.com
 - Mr.Gaurav Mittal is currently working as A.P in Bhai Gurdas Institute of Engineering and Technology, Sangrur

